If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+3X-1=180
We move all terms to the left:
X^2+3X-1-(180)=0
We add all the numbers together, and all the variables
X^2+3X-181=0
a = 1; b = 3; c = -181;
Δ = b2-4ac
Δ = 32-4·1·(-181)
Δ = 733
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{733}}{2*1}=\frac{-3-\sqrt{733}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{733}}{2*1}=\frac{-3+\sqrt{733}}{2} $
| 6u=(1+3u) | | 6=9g=12 | | 4x-1=2(2) | | m=1+0.5/2.8 | | 22x+110=x | | -2.8m=-3.3 | | -2.8+m=-3 | | 5x-2*10x-18=3x+14 | | m-0.1=10.9 | | O=-6+x | | 4x+25+2x=180 | | 20x-10+8x-20+140-6x=x | | 7/x=14/3x+4 | | 3x+13=-26 | | 10x+9=(15x-9)+4x | | -4=b/2+-7 | | 4x=(10x+9)+(15x-9) | | 2w-(-8)=12 | | y/9-(-34)=38 | | 5(j-2)+12=2 | | -3=2/v-5 | | 15x-9=(10x+9)+4x | | (4p-7)=3 | | 2-(-4u)=10 | | 3c-13=2 | | 3=(5x-2)+(2x+5) | | 3|w-8|+15=60 | | 2x+5=(5x-2)+3 | | 31/3=x/6 | | 5x-2=(2x+5)+3 | | 7x-(4x+5)=20 | | 3x25=180 |